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ABSTRACT 

Discrete affine systems are obtained by applying dilations to a given shift-invariant system. 

The complicated structure of the affine system is due, first and foremost, to the fact that it is not 
invariant under shifts. Affine frames carry the additional difficulty that they are "global" in nature: 
it is the entire interaction between the various dilation levels that determines whether the system 

is a frame, and not the behaviour of the system within one dilation level. 
We completely unravel the structure of the affine system with the aid of two new notions: 

the affine product, and a quasi-affine system. This leads to a characterization of affine frames; 

the induced characterization of tight affine frames is in terms of exact orthogonality relations that 

the wavelets should satisfy on the Fourier domain. Several results, such as a general oversampling 

theorem follow from these characterizations. 
Most importantly, the affine product can be factored during a multiresolution analysis con- 

struction, and this leads to a complete characterization of all tight frames that can be constructed 
by such methods. Moreover, this characterization suggests very simple sufficient conditions for 

constructing tight frames from multiresolution. Of particular importance are the facts that the 

underlying scaling function does not need to satisfy any a priori conditions, and that the freedom 

offered by redundancy can be fully exploited in these constructions. 
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Affine systems in L2(lR
d): the analysis of the analysis operator 

AMOS HON AND XIOUTI Si IHN 

1.  Introduction 

1.1. General 

The present paper is the last in a series of three, all devoted to the study of shtft-iv.vari.ant. 

frames and shift-invariant, stable (=lUesz) bases for Lj(IlV'). </ > 1, or a subspace of it. In the first 

paper. [RSI], we studied such bases under the mere assumption that the basis set can be written as 

a collection of shifts (namely, integer translates) of a set of generators <I>. The second paper [RS2] 

analyses the Weyl-Heisenberg frames and Riesz bases. In the present paper, we study applications 

of the results of [RSI] to wavelet (or affine) frames. Wavelet systems are not shift-invariant, hence 

the basic, analysis of [RSI] cannot be directly applied to this case. 

Our original intent was to write a paper on affine Hies/ bases and affine frames. The present 

paper, however, is devoted solely to fundamental affine frames. The primary reason is that the 

fiberization techniques of [RSI] allowed us to unravel completely the complicated structure of the 

analysis operator (or more precisely, of the so-called ••frame operator") of air affine system, with 

less success with respect to the relevant synthesis operator. In fact, the current wavelet theory is 

(implicitly) centered around the synthesis operator, since, initially, the synthesis operator seems to 

be very attractive: its transformation to the frequency domain can be done by standard Fourier 

analysis methods, and this leads to a very simple structure when the system is orthonormal or semi- 

orthonormal. That, in our opinion, is deceptive: as soon as one attempts to study non-orthogonal 

systems, the painfully complicated structure of this operator emerges, a structure which is easy to 

reveal and hard to unravel. In addition, the operator does not interact well with multiresolution 

constructions, in the sense that its basic component, the bracket product, cannot be factored during 

the construction. 
We believe? that the study of the analysis operator in this paper results in the first complete 

systematic intrinsic analysis of affine systems, and. to explain this point of view, we briefly compare 

the typical results lie«« to the present state-of-the-art in this field. Wavelet theory is currently 

dominated by the innovative idea of multiresolution analysis (=:MRA; cf. [Ma], [Me]). By all 

accounts, MRA constitutes a major breakthrough in the understanding of affine systems, and 

even more importantly, for the construction of such systems. However, the current MRA theory 

suffers in several important aspects. Firstly, its main body consists of sufficient conditions for 

obtaining "good" systems, and not of characterizations of such systems. Furthermore, the typical 

assumptions begin with the imposition of stringent conditions on the refinable space. Added to 

that, the sufficient conditions are not given intrinsically in terms of the system, but rather, in terms 

of the algorithm used for its construction: Put it differently, "good" systems, constructed by "bad" 

methods, are unapproachable. Secondly, almost all existing MRA results are about irredundant 

systems: not only that the additional freedom offered by redundancy have not been successfully 

exploited to date, but. due to their global nature and lack of biorthogonality relations, redundant 

systems remain, by and large, an unanswered challenge to multiresolution analysis. 
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Tu contrast with the above, tin* results of this paper center around a new mm-constructive 

intrinsic analysis of affine systems. It is carried out in any spatial dimension d. for any intc<]cr dila- 
tion matrix .s. and any number of wavelets. It results in complete characterizations of fundamental 

frames and fundamental tight frames together with formulae for the associated frame bounds. 'I he 

characterizations. as well ;us the bound formulae, are given in terms of the norms and inverse-norms 
of a certain family of constant-coefficient non-negative definite self-adjoint infinite-order matri- 

ces, referred to hereafter as "libers'. These characterizations, in their essence, cannot distinguish' 

between redundant and irredundant systems; however, other methods may then be employed to 

characterize irredundancy: in the case of tight frames / orthonormal systems the additional step 
is straightforward, and a complete characterization of fundamental orthonormal affine systems is 

therefore obtained. 
While our theory does not assume and does not suggest any constructive way for obtaining the 

affine system, it reduces the analysis of systems construct«! by multiresolution to simple arithmetic 

calculations: the main reason for that is that the basic component of the analysis operator, the 

newly defined affine, product, can be factored during the MRA construction. The study of MRA 
constructions can then be carried out without any a priori restrictions on the spatial dimension, 
the dilation matrix, and/or the number of scaling functions. Furthermore, the scaling functions 
may or may not be "good" generators for VQ, the number of wavelets may, be arbitrarily large 

(which means that sometimes redundancy is inevitable), and the mask functions are not a-prion 

restricted in any way (other than being measurable and appropriately periodic). In that generality, 

we provide a complete characterization of all fundamental tight frames that can be constructed by 
multiresolution. These characterizations lead to a very simple; sufficient condition, given entirely in 
terms of mask functions, that guarantees the construction to yield a fundamental tight frame. The 
results here provide an clear evidence to the "power of redundancy": the simple sufficient condition 

is based on the ability to find a matrix whose first row is given, and whose columns are orthonormal; 
redundancy allows one to have more rows than columns in that matrix. As an illustration for that 

power, compactly supported tight affine frames generated by 2m. univariate splines of order 2m are 

constructed. 
In addition, several (seemingly unrelated and none related to MRA) observations now in the 

literature may be explained and thereby generalized, with the aid of the results here. To mention 
few examples, Daubechies-Tchamitchian's upper frame bound estimate, [Dl], is closely related to 

the bounding the /?2-norm of a self-adjoint matrix by its f,-iiorm, while their lower frame bound 

estimate corresponds to inverse-norm estimates of a diagonally dominant matrix. Daubechies' and 
Chui-Shi's bounds in terms of a "Littlewood-Palcy type expression" (see [D2], [CS2] and [CS-1]) 

can now be understood as an attempt to estimate the norm and inverse-norm of a Ilernntian 

matrix in terms of its diagonal entries, while Chui-Shi oversainpling results [CS1], [CS3] and [CS4], 
follow at once by observing that the fibers associated with the oversainpling system are, up to a 

normalization factor, submatrices of those associated with the original system. 

1.2. Univariate dyadic systems 

We illustrate some of the main observations made in the paper by discussing them in a partic- 
ularly simple setup, when the spatial dimension d is 1 (i.e.. we decompose L-j(lR.)), and the dilations 



are dyadic. We assume here basic familiarity with wavelet theory, and defer various definitions to 

the main body of the article. 

An affine system X C Li is a collection of functions of the form 

A' = (J DkE($), 
k£'/L 

where * C L2(IR) is finite. £(#) = Uv,€*.E(v>) is the collection of s/u/te i.e., integer translates, of 

*, and D is the dyadic dilation operator D : / i-> \/2/(2). The functions in * are the generators 

of A', usually referred to as (mother) wavelets. The analysis operator T* is the map 

2". :L2'-»£2(A') :/>->{</,*■) }«6X. 

The system X is a fundamental frame if T* is well-defined, bounded and bounded below. A 
fundamental frame is tight if, up to a scalar multiple. T' is unitary. The frame bounds are the 

numbers ||T*||2, and 1/IIT*-11|2. 
We introduce in this paper, and extensively use, the following affine product: 

oo   

tf(w,w']:=£      J2      V~(2fcu;)'<M2V),    w,w'€ 1R,  ' 
ve* fc=(t(w-w') 

where K is the dyadic valuation: 

*:IR->2Z.:w>-Mnf{A;€2Z:2A:u;G27rZ}. ,,..-.;-..,w..<■ 

(Thus, K(0) = -oo, and K(U>) = oo unless w is 27r-dyadic.) Our convention is that V[u,u'] := oo 

unless we have absolute convergence in the corresponding sum. Throughout the introduction, we 

always assume that 

|#J)| = 0{\u\-l/2-s),    nearoo,    for some 8 > 0, 

for every wavelet ip G *. The assumption is so mild (even the Haar function satisfies it!) that we 

forgo mentioning it in the formal statements of this section. Finally, we set, for r > 0, 

HT:={fEL2:  |supp/n[-r,r]| = 0}. 

Since the system X is not shift-invariant, and since our fiberization techniques from [RSI] 

assume this shift-invariance at their outset, we analyse X by associating it with two different shift- 

invariant systems. The first, and simpler one, is the truncated affine system X0, obtained by simply 
removing from X the non-shift-invariant part, i.e., the part generated by negative dilations. The 

truncated system X0 is primarily useful for the analysis of Riesz basis systems (the case when T* 

is surjective): this property cannot be lost while passing to a subsystem, and, in fact, the converse 

is also true. 



It. is harder to study redundant, fundamental frames (i.e.. fundamental frames that are not 

Riesz bases) with the aid of truncation, and the reason is essential: frames cannot be "locally 

analysed", meaning that A can lie a frame while a subset Y C A may not be a frame (for the 

closed subspace of L2 that it spans); thus, one is not likely to be able to analyse -frame properties'' 

of A. by analysing analogous properties of subsets of A. This also may explain the fact that. 

to date, the literature on multiresolution constructions of affine systems (which are very -'local1 

methods in the above sense) contains a wealth of results about, orthonormal affine systems, as well- 

as many results on Riesz basis systems, and only a handful, specilic, results on frame constructions. 

Partial success in connecting between the analysis operators of A and A0 is obtained upon 

restricting the latter one to spaces of the form Hr, r -> oo. Our study of that limit process, which 
is detailed in the paper, reveals a fundamental connection between the affine system A and another 

shift-invariant system which we call the quasi-affine system associated with A. and denote by \q. 

It is obtained from X by replacing, for each tl> G *, k < 0, and j G 7L. the function 2^2V>(2fc • +j) 

that appears in X, by the 2-A' functions 

2ktl}(2k{- + n)+j),    a = 0.1,...,2-* - I. 

Note that, while the affine system is dilation-invariant but not shift-invariant, the situation with 

the quasi-affine system is complementary. 
It is obvious that "basis properties" of A' (such as orthogonality) are not preserved while 

passing to A"7. In contrast, the following basic result, which is a special case of Theorem 5.5, holds: 

Theorem 1.1. An affine system is a fundamental frame if and only if its quasi-affine counterpart 

is a fundamenta/ frame. Furthermore, the two systems have identical frame bounds. In particular, 

the affine system is tight if and only if the quasi-affine system is tight. 

We then analyse the affine system A via the so-called "dual Gramian" fibers, G{u), u G HI 
(which may be only almost everywhere defined) of the shift-invariant A'', [RSI]. Each-fiber G{UJ) 

is a non-negative definite self-adjoint matrix whose rows and columns are indexed by 2TT7L, and 

whose (a, /3)-entry is 

C(u))(o,/J)=*[« + «,w+4 

Each matrix is considered as an endomorphism of t2{2n7L) with norm denoted by Q*{u) and inverse 
norm </*-(w). It is understood that Q'\OJ) := oo whenever G(ui) does not represent a bounded 

operator, and a similar remark applies to Q*~{u). We then conclude from Theorem 1.1 and the 

results of [RSI] the following: 

Theorem 1.2. Let X be an affine system generated by *. Let Lj* and Q— be the dual Gramian 

norm functions defined as above. Then X is a fundamental frame if and only ifQ* ,G*~ G £<»• 

Furthermore, the frame bounds of X are ||t?*|U«, and 1/\\G*~\\LCO- 

It is easy to conclude! the following from the above theorem (cf. Corollary 5.7 for the general 

case): 



Corollary 1.3. 
(;i) An ailine system X generated by $> is n fundamental tight frame with frame bound C if and 

only if 

(I.I) i|'[ü,\u;] = r. 

and 

(1.5) ty[uJ.uJ + 2- +-17T./']  = 0. 

for a.e. a,- € IR and j G ZZ. 
(b) An altine system X is a. fundamental ortlwnonnal system if and only if (1.5) holds. (1.4) holds 

with C — 1. and <!' lies on the unit sphere of L>. 

Note that the diagonal entries of the dual Graniian matrices have the form 

oo 

(l.G) *[".-•] =Y,Y,   IVK2few)|2. 

Thus, known estimates for the frames bounds in terms of this expression [Dl]. [CS1], [CS2] and 

[CS3], tan be accurately viewed as an estimation of the norm and the inverse norm of a non-negative 
definite matrix via the inspection of its diagonal entries. Furthermore, in complete analogy to semi- 

orthogonal systems, one can define here diagonal affine systems as the case when vf'[u;,u;'] = 0, for 

every u; j= u/. In this case, the frame bounds are entirely determined by (l.ü). and a dual frame 
can be conveniently constructed by "diagonal" division, i.e., dividing each </> by *I'[w,u;]. 

Several applications of the above analysis are described in the paper. Among these, we mention 
here only the one concerning the construction of tight frames using multiresolution with a single 
scaling function. Here, we assume <j> G L> to be refinable with mask r^, and mean that 

0(2-) = T0£ 

for some 27r-periodic T^, limta)_+0 </>M = I = </>(()), and that $ decays at ±oc at a polynomial rate 

no slower than 1/2 + 6, 6 > 0. 
Given any finite set * in the closed linear span Vx of the half-shifts of </;(2-), it is then possible 

to represent each ip £ $ on the Fourier domain as 

'0(2-)  = Tjrf, 

for some 27r-periodic rv,, assumed hereafter to be (essentially) bounded. We then construct a matrix 

A which has two columns and 1 4- ## rows, whose 0-row is 

[7-0,T0(-+7r)], 

and with the other rows being 

[T0,T0(- + 7T)],   •</;£*• 

Note that, importantly, we are not assuming the matrix A to be square, and that no major assump- 
tion has been made so far with respect to <fi and r,/,. The following is a special case of Corollary 

G.7: 



Theorem 1.7.   Under the assumptions listed above, if the columns of the matrix A are orthonormal 

for almost every *; € [0. TT], then * generates a fundamental tight affine frame with frame bound 1. 

Note that the construction is "local" but the analysis cannot be so: The shifts of 4' cannot be 

expected in general to form a frame for V, or a subspace of it. Note also that if <I< is a singleton, 

the matrix A is 2 x 2. and the above construction can succeed only if T> is a conjugate, quadrature 

filter (CQF). i.e., 

|7*|2 + M- + 7r)|-'=l.     a.v.. 

Thus, given a CQF r„. one may, for example, uses Mallat's construction (see [Ma]) to yield a tight 

frame generated by a single wavelet. This result (for the present particular setup) is essentially due 

to [L]. 
We also remark that the shifts E{<j>) of a refinable function </^whose refinement mask is CQF 

do not necessarily form a frame of V« := ZT'V,. In fact. if. e.g., I vanishes on a null-set only (as 

is the case when o is a compactly supported, or an exponentially decaying function), then E(((>) 

cannot be a redundant frame (see [RSI]). It follows then, in case the CQF mask of the refinable 

<t> is finite, E{<j>) is a frame only when it is orthonormal. Hence, the above-detailed construct ion of 

tight affine frames is of particular interest since it covers cases when <b is a "bat!" generator of V0. 

In fact, affine frames constructed by MRA from a frame E(<£) are already analysed in the present 

literature; cf. [LC] and [BL]. 
Theorem 1.7 does not characterize all tight, frames constructed by multiresolut ion. However, 

such characterization is possible, and is given in Theorem 6.5. 

Finally, the following result (which is a special ca.se of Corollary 6.8) concerns the construction 

of orthonormal systems: 

Corollary 1.8.  Assume that A is a square matrix. Then, the tight frame constructed in Theorem 

1.7is orthonormal if mid only if\\(j>\\ = 1. 

The standard current argument for constructing an orthonormal affine system from multireso- 

lution, assumes that the shifts of the scaling function are orthonormal (cf. [D2]). which forces y, to 

be CQF. However, the above result shows that, given a CQF, an orthonormal system is guaranteed 

by the mere assumption that the scaling function has norm 1 (recall that one cannot adjust </> to 

have norm 1. since we already assume 0(0) = 1). Under the additional assumption that i> is a 

polynomial, this fact lias been established in [D2] for the case discussed in this section, and (LLS] 

for the general case. 

1.3. Compactly supported tight spline frames 

Our goal in this paper is confined to developing the basic theory of discrete; affine systems. 

Therefore, applications are discussed because they are either instrumental to wavelet, theory (such 

as the discussion in §6). or as an anecdotal illustration (such as the discussion in §4.3). In particular, 

no part of this paper is devoted to specific const ructions of wavelet systems. 

However, it should he undoubtedly clear that constructing tight, frames based on results like 

Theorem 1.7 is extremely simple, if one is willing to use sufficiently many wavelets. The simplest 

construction we are able to observe is detailed in this subsection. 



Let m be a positive integer, and define T0{U>) := c:os-n,(u;/2). The polynomial r0 is the refine 

ment mask of the centered B-spline 4> of order 2m: 

*M =   (w/2)*»   * 

We define 2m (27r-pcriodic) wavelet masks by 

~n\^) '■ — J(2m) sinn(w/2)cxKa,,,-"(u;/2).     1 < u < 2m, 

and let r := {TH)%'10. We then observe that, firstly, 

(TM, T(W)) = (cos2(u;/2) + sin2(u;/2))2ni = 1, 

and that, secondly, 

(TM,T(U; + TT)> = (sin(u;/2)cos(^/2))2m(l - l)2m = 0. 

Therefore, the 2m wavelets defined by 

f.M:-.'/ffl°^-("y"("/41. • *»*«-. 
generate a fundamental tight frame. Note that each of the wavelets is a real valued symmetric: 
(or anti-symmetric) function supported in [-771,77».] = siippc/j and is a spline of degree 2»;» - 1, 

smoothness C2m"'-\ and knots at Z5/2. 
"The two piecewise-linear wavelets (that correspond to the choice m = 1) are drawn is Figure 

1. 

i-jji--"..- 

Figure 1. The two wavelets that generate a C° piecewise linear tight frame. 

The extension of the above algorithm to odd order splines is straightforward: one merely needs 

to replace 2m by 2m - 1 and to insert a factor u •-)■ e~iu/2 into the definition of the various masks. 

1.4. Layout of the paper 

The rest of the paper is laid out as follows. In §2 we briefly discuss frames and affine systems 

in L2, and in §3 present relevant material from [RSI]. In |j4 we discuss the relations between an 
affine system and its truncated affine system. The core of our analysis is in §5, where quasi-affine 

systems are studied, and where the results of §4 are applied to yield Theorem 1.1 in its general 

form. Finally, the construction of tight frames via multiresolution is the topic of *j6\ 



2. Frames and affine frames 

For a given countable subset, A' C L2 := L2(IR'/), the synthesis operator T := Tx which is 

used to reconstruct functions from discrete' information is defined by 

(2.1) T ■ <'•_»( A') -» L> :r^Yl c^x- 
.re.v 

For a general A', 7\ is well-delined only on the finitely supported elements of l'2(X). In case it 

is bounded on these finitely supported elements, it is then extended by continuity to all of £2(A'). 

In that event, A' is said to be a Bessel system, and we refer then to the number \\TX\\2 as the 

Bessel bound of A. The adjoint of T's of 7\ is the analysis operator 

r.v :/,,. -W,,(A) :/->((/. r))re\- 

Of course, the Bessel bound can be cquivalently defined as il'-Z^v li ~- 

We study in this paper the following possible properties of a given system A. 

Definition 2.2.  Let A' be a Bessel system. X is n 

(a) frame if ran T is closed (ecinivnlently. if ran T* is closed). 

(b) Riesz basis if it is n fnune mid T is 1-1; otherwise, the frame A is redundant. 

(c) fundamental frame if it. is ;i fnune and T' is 1-1. 

If X is a frame, the restriction of T to the orthogonal complement (in ^2(A')) of kerT is 

bounded below, hence invertiblc. This partial inverse of T is denoted here by T-1, and a similar 

definition is used to'define T*_l. For a frame A, it is customary to refer to the Bessel bound 

\\T\\'2 as the upper frame bound. The complementary bound is ||T_I|!~- = ||T*_1|r2 and is 

sometimes called the lower frame bound. Thus, in the instance of a fundamental frame, the 

frame bounds are the sharpest- constants in the inequalities 

c\\f\\l2<\\T*f\\lAX]<C\\f\\i,.    V/6L, 

A frame whose upper and lower bounds coincide is a tight frame. One should note that it, is 

usually easier to handle! inverses than pseudo-inverses, and it, is thus desired to study the operator 

that is known to be injective; consequently, the study of a Riesz basis A is best done with the aid 

of T. and the study of a fundamental frame A is best done with T'. Indeed, this paper focuses on 

Jwidamental frames, and exclusively approaches the problem via T*. 

The following elementary fact, will be used in this paper as the link between tight frames and 

orthonormal ones. 

Proposition 2.3.   Let A be a tight, fnune in L2 (not necessarily fundamental) with frame hound 

I.  Thru: 

(a) X lies in the closed unit, hall of L2- 
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J_j^"jü.:.,-i.,.«L..j—J-4-J.^-J.. 

(b) X is orthonorinal if and only if it, lies on the unit sphere of L-2. 

Proof. Since A" is assumed t,o be tight with hound 1, TT* and T*T are orthogonal pro- 

jectors. Thus, lor every atom x 6 A', the sequence T"x cannot exceed in norm the /»-sequence in 

&z(X) with one-point support in ./: (since T*x = T*T5, and T*T is orthogonal). Consequently, 
||T*x|| < I. and since the value T'x assumes at x is ||.r||'J. we conclude that \\.r.\\'2 < 1 with equality 
only if TyiX. = 0. This proves (a), and (l>) easily follows. D- 

In order for A" to be fundamental in L>, it should, necessarily, be infinite;. In practice, however, 

one generates A by applying certain unitary operators to one or few functions, called the gener- 
ators of the system. In the context of affine (wavelet) systems, two such operators, dilation and 

translation, are employed in the construction of A*. Here, the dilation operator is meant as 

D:f»\dcts\l'2f(s-), 

with s a d x d invertible matrix. The matrix ,s is held fixed throughout the paper, and its specific 
nature is usually ignored. It is only assumed to satisfy two basic properties: (i) .s~' is contractive, 
and (ii) the entries of s are integer numbers. The first assumption is essential in the affine context. 

The second is essential for the application of our shift-hivariance methods. 
The second operator is the shift operator. Here, for a fixed invertible d x d L. we define the 

shift operator £? by 

Ej:f^f(-+j),    jeL7Zd, 

and set, for any function set <I>, 

ELW-={EL'<f>:  0 6*, j€7Zd}. 

Since the extension of our results from the lattice 7L'1 to a lattice L7Ld is purely notational, we always 
describe our results with respect to the integer lattice. Other lattices enter the discussion only when 

two different lattices are analysed simultaneously (such as in the context of oversampling). 

In these terms, an affine system A' consists of the orbits obtained by an application of a 

discrete analog of the affine group to a finite function set *I': 

(2.4) X:={DkEjil> = E"~'":iDkrJ>: </•> € tf.fc 6 ZL,j eTL'1}. 

We index the function DkE^) by (tj>,k,j), and identify the index with the function, i.e., we set 

(2.5) (4>,k,j):=DkEjxp. 

Given any discrete lattice £ C Eld, the function set X is £-shift-invariant if each £J, j 6 C, 

maps X 1-1 onto itself. The default lattice is always 7L'1. In [RSI], it was showed that the synthesis 

and analysis operators of any shift-invariant A can be decomposed, on the frequency domain, into 

a collection of constant coefficient (usually infinite-order) matrices, "fibers", termed there the pre- 

Gramian, Gramian, and dual Gramian. It was proved that the properties of being a Bessel system, 
a frame, a Riesz basis, and others, can be studied by studying an analogous property for each of the 

(much simpler) fibers. More details about these fiberization techniques are given in ?j3. However, at 
the outset of our study here, one should observe that an affine A' is not invariant under any lattice 

shifts, since only the .s-fcZt/-shifts of Dkip are included in A", and these shifts become sparser as 
k —>• — oo. 
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Notations:   bracket products.  The following bracket product, plays a key role in the theory of 

shift-invariant systems (cf. e.g., [.IM]. [BDR1.2]. [RSI]): 

(2.(i) [f, <!]■■=    Y,    ./'(•+./)//(■+./)•     /■</G /.- 

Among oilier things, we will require the following elementary fact, that   follows from Parseval s 

identity: 

(2.7) l|r^)/||--=||[/,^]||/.,,nr-v    f.'heL,. 

In this paper, we introduce another important bracket product: the affine (or dual) bracket 

product. Given >I> g L>, and a dilation matrix .s. the product is defined as 

(2.8) *[.]:(ü;,U;')^ ]T       Z      i/V^M**fc<A     u;.u/G IR''. 

Here. the /.--function is defined by 

(2.9) K : IR'' -» >Z : -' -» i"f{A: e /Z : .s*A'u.- G 27T/Z''}. 

Note that /v(U) = -oo, and hence the diagonal of the affine product, denoted hereafter by *[], is 

«l'[] =-■-> ^ 2 |-j/i(.s,A'^)|-. 

Also. h-M = TC. unless u; G 2irs,k7L'' for some integer A:, and hence i''[u.\u:'] = 0. unless *■ -J is 

.s*-adic. Furthermore, one easily observes that i'[, j is .s*-invariant. i.e., 

(2.1Ü) *[.s*u;<.s*u;'] = *[w,u'],    Vu,u/. 

3. Preliminaries: dual Gramian fiberization of shift-invariant systems 

Given a shift-invariant system E(<1>), «l> C L>.. three matrices, the prc-Gramian. the Gramian 

and the dual Gramian appear in our fiberization approach in [RSI]. The most relevant to the 

present context is the dual Gramian. which is a decomposition, on the Fourier domain, of the 

operator XT*, and is a collection G(u). u.- G Hi'', of non-negative definite self-adjoint matrices. The 

rows/columns of each matrix are indexed by 2TTZZ'' (or. more generally, by the lattice dual to the 

lattice of shifts that we use, viz., the lattice 2irL—l7Zd. if the- shifts are taken from L7Ld). and the 

entry (a. ii) of G(UJ) is 

G{UJ){<\. .1) = ]T 4>(ui + a)r/>(u; + ii). 
</>€+ 

The matrix G'M is considered as an endomorphism acting on (>->{2ir7Zd). (Initially, however, we 

cannot even assert that the; entries of G'M are well-defined in this sens« that their sum converges 

absolutely, let alone that G(u>) represents a bounded endomorphism of 1,{2-K7L' ).) 

The following theorem summarizes some of dual Gramian results (cf. Corollary 3.2.2. Theorem 

3.3.5. and Theorem 3.4.1 of [RSI]). 
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Theorem 3.1. Let X ho a system that consists of tho shifts or some. <I> C L>. with a dual Cnuninn 

G. Consider the following functions (if the underlying operator is not well-defined or is unbounded, 

its norm equals oc. l>y definition): 

cr      :    \Rd    ->    1R.+    :    «•    ^      Wf'MW      •■ 
c;-    :    HI''    ->    Dl+    :    »•    -*    l|G('»;)-'|l    • 

Tiien the following is true. 
(a) The following conditions arc equivalent: 

(i) X is a Bessel system. 

(ii) G* € Loo- 
Furthermore, the Bessel hound of X is ||t/*||/,.x. • 

(b) Assume A" is ;i Bessel system. Then the following conditions are equivalent, 

(i) X is a fundamental frame. 

(ii) Q- e Loc- 
Furthermore, the lower frame hound is then l/||i/"~ ||/. v. ■ 

(e) Assume X is a fundamental frame . Then the following conditions are equivalent: 

(i) X is a tight frame. 
(ii) G = CI a.e. for some constant C (with 1 the identity matrix). 

Furthermore. C is then the frame hound of X. 

4. Truncated affine systems 

4.1. The connection between an affine system and its truncated counterpart 

Let X be a an affine system (cf. (2.4)). Given an integer k, the truncated affine system Xk 

is defined by 

(4.1) AV.= {(M^ = ü*'£;Ve.V: k'>-k), 

(cf. (2.5)). It is clear that Xk is .sfc-shift-invariant. We set Afc_ ■= X\Xk, and abbreviate T := T.v, 

Tk ._ Tx^ ancj jk_ ■- TXk_. For any k, a natural isometry between the spaces (2(Xu) and /'j(A'fc) 

is given by 
(Vfce) (•</>, n,j) :=<U:k + n,j). 

It is evident that 

(4.2) T() = DhTkV
k. 

Since the maps Vk, Dk ate norm-preserving, the above relation reveals a rigid connection between 

the Bessel property and/or Riesz basis property of A" and A() (see below). The analysis of redundant 
frames via the above approach is harder: A can be a frame (fundamental or not) while A"„ is not. 
To overcome this difficulty, we investigate the restriction of the analysis operator to subspaces of L2. 
We note that the following theorem and its subsequent corollary hold for general dilation-invariant 

systems. 
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Theorem 4.3.  Let X be a an affine system. 
(a) X is a Dessel system if mid only ifXk is so. for some/any k. Furthermore. \\T\\ = \\Tk\\. 

(b) X is a Riesz basis if and only if.\k is so. for some/any k. Furthermore. ||T_I|| = \\Tk~
l\\. 

(r.) Assume that X is a Dessel system, let If be some subspace ofL-2ßV'). and let H' be the closure 

of\Jke/iü
kH. If for some k. Tk  is bounded below on D'kIL then V is bounded below on 

II'. and 
irr*     _1 II <r IIT*    _' II II*   \„.     II S \\h-\,,     II- 

Proof. The relation (4.2) proves that. Tko is bounded (invertible) for some k0, if and only 

if Tk is so for every k, and the norms are identical in such a case. The claims in (a,b) now easily 

follow from the facts that (i) the boundedness and invertibility of T are determined by its action 

on the finitely supported sequences in (;->(X). and (ii) each such sequence lies in some £-2(Xk), for 

sufficiently large A;. 
In the proof of (c), we assume, without loss, that A: = 0, and first note that, in view of (a), it 

may be assumed without loss that X and .V„ are Bessel systems. Now. (-1.2) implies that 

TJ = \'~kTkD~k. 

Therefore, T0* is bounded below on H if and only if Tk* is bounded below on D~kH, and furthermore, 

lir^iJ-'II^IK^i,,-,,,)-1!!- 
The boundedness below of T£\      H implies the boundedness below of the restriction T*\D_hH of 

T* to D~kH, and thus 

IKri^J-'I^IKT^^J-'I^IKTo*,,,)-1!!. 

Since k here is arbitrary, (c) follows. '-' 

In general, it is hard for us to apply (c) of Theorem 4.3 for the derivation of explicit conditions 

for X to be a frame. However, for one specific choice of H, our tools apply. This special, yet very 

important, case is described in the next result. 

Corollary 4.4. Let 

(4.5) Hr := {/ € L-2(B.d) :  supp/C Mrf\nP}, 

and whore Qr the ball of radius r around the origin. Then X is a fundamental frame if. for some 

r > 0, r0* is bounded, mid is also bounded below on Hr. Also, with ro'r the restriction ofTJ to 

lir'-'il^llToV'll. 

Proof. By (a) of Theorem 4.3, T' is bounded if and only if T,; is bounded, and therefore, 
we may assume without loss that A' is a Bessel system here. Now, we invoke (<:) of Theorem 4.3, 
for the choice H := Hr. Since .s*"1 is contractive, D-lHr D HSr, for some 6 < 1. Therefore, 
Une7zDnHr is the space of all functions whose Fourier transform vanishes on some neighborhood of 

the origin. Since this space is dense in L>(1R'1), we obtain that T* is bounded below on the entire 

L2(IR'Z), i.e., that A' is a fundamental frame. '-, 
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The converse of the above result, is valid as well, but requires us to impose a decay condition 

(at oc) on <!' (with <I' the generating set of A'), which we consider as very mild. To describe this 

assumption, set, for every A: G 7L+. 

Ak : = {n € -In'H? :   |<v| >2fc}, 

and 

c(ij>,k):=\\ Y, !'/■(•+«or2ii/^([-»,W]")- 

Our decay assumption on # is as follows: 

■DC 

(4.6) Y, Hr(^''A:) <0°- 

It is elementary to prove that (4.6) is satisfied once i/'-M = 0{\UJ\~'').. as u; -> oc. for some p > rf/2, 

and every •</' £ *. However, there are examples (e.g., Haar wavelets in several dimensions) that 

satisfy (4.6) while violating that simpler, yet stronger, decay assumption. Whence our decision to 

stick to the more complicated (4.6). 
With the additional assumption (1.6). the condition stated in Corollary 1.4 is equivalent to X 

being a fundamental frame. 

Lemma 4.7. Let X be a fundamental affine frame, generated by a finite set * (r.f. (2.4)) that 

satisfies (4.0). Then, for every e > 0, there exists a sufficiently huge r such that Tn* is bounded 

below on Hr, and ^ 
IIToV-'H^IIT-'H+e.     . 

Proof.        First, since X is assumed to be a frame, A' is a Bessel system, hence A"0 is a Bessel 

system, too. by virtue of Theorem 4.3. 
Let r,7ir (TJ_ir respectively) he Liu; restriction of r0* (T0*_ resp.)   to //,..   Clearly, for every 

/6tfr, 

(4.8) IITVII^IIT^/lP + IITo'.,,./!!2. 

We will show that 

r —too 
(4-9) ||T,;_.,.|| —M). 

However, since A" is a fundamental frame, we conclude from (4.8) that for every / € Hr. 

IIToV/ll2 = HTVii2 - ||r(;_,,./||2 > ||r-'ir2||/||2 - HT0v,.|'21""2 

Thus, given any e > 0, we can choose r sufficiently large to obtain that T0*r is bounded below and 

that 

HToV'llfClir-'ll+e. 
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Thus, we only need prove (4.9), and, clearly, we may assume there that * is a singleton {■</>}, 

as we do. indeed. Here, we fix k < 0, set. H := DkF(c). and compute that (cf. (2.7)) 

\\T,\ff= Y, \(DkE"tf.f)f= Y. K^'V',£>-fc/>la 

.6/Z 

= H^.D^/lllLc,,,,, - !<lrt.s|A'||[(A,/(.s*fc-)]llLni-)- 

Since / € //,.. /(***'•) vanishes on a ball with center al the origin and radius Skr. lor some 6 < 1. 

Thus, 

|clet.s|A1|[^/(.s^'-)]||lj(,r.M < |det.s|fc||    ]T    \,?(- + a)|-||/_nr-)|| [/(**M. /VM] ll/,t{ir") 
|<f|>(S'-r 

= 11  E  ^(■ + "')l'Jll/,.nr^ll/ll'2- 
|«|><SfcT- 

Since ||ro*_.,./ll'-' = £*<„ ||rY*-t/||-, we therefore conclude that 

Hro-,rlla < Y 'I    E    I«-'!-+«)l'i|||..cir-)- 
t<()       |c>|>ÄlT 

Selecting r = rt'-*''', /.•' € 2Z+, the above sum becomes 

(4.10) EH    E    l'/'(-+',)l"'ll/^('ir")- 

Since we assume (4.G), this last expression is recognized as the tail of a convergent series, hence 

can be made arbitrarily small by choosing large k' (i.e.. large r). a 

We summarize1 our findings concerning the connections between the frame properties of an 

affine system and its truncated counterpart in the following theorem. 

Theorem 4.11. Let A' be an affine Basso! system generated by the finite #. Assume that * 

satisfies condition (4.(1). Then X is a fundamental frame if and only if for some r > 0, the 

restriction T0*,. of the map TXn to Hr is bounded below. Furthermore, 

iirr'ii= K«I iK^r'ii- r-foo 

Finally, two immediate consequences of Theorem 1..'5 (that are of negative nature) are recorded 

in the following corollary. 

Corollary 4.12.   Let X l>e an affine system, and A'(] be its truncated counterpart. Then: 

(a) A'o cannot be a fundamental Riesz basis. 
(b) A'o cannot be a tight frame unless ranTv is the orthogonal sum ®ke7/,™nTxk.\xk.., ■ 

Proof.        (a): If A'0 is fundamental in L2(IRU). then A, as a proper superset of A'o, cannot 

be a Riesz basis for L2{lRd). By Theorem 4.3, A'{) is not a Riesz basis, either. 
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(b): Since A'0 is a frame, then, by .(c) of Theorem 4.3. A is a frame too, and we have 

l|r||>i/||r-1||>i/IW»-,ll = liroll, 

with the equality since A"0 is tight, and the penultimate ineciuality by (c) of Theorem -1.3. Further, 

(a) of that theorem guarantees ||T|| = ||T0||, and hence, we arrive at 

Urn = i/||r-Ml = l/lir«-1!! = ll^oll, 

which shows that X is also a tight frame, and has the same bounds as those of A'(). Now, let 

/ 6 ran To. Since X and X0 are tight frames for tl\eir range, and with the same frame bounds, 

and since / e nuxT0 C ranT, we obtain that ||r*/ll = ll^/H- On the other hand. ||r*/||2 = 

||T0*/||2 + ||T0*_/||2. Thus, we conclude that ro*_ vanishes on ranT0, and the result now easily 

follows. ■-E 

There are examples (some can be constructed based on the biorthogonal wavelets obtained 

in [CDF]) of an affine system X whose corresponding truncated system A0 is a frame, for which, 

nonetheless, ranT is not the orthogonal sum ©„gzranrx^.v,,-,- This means that tightness 

assumption' is (b) of the above corollary cannot be removed. 

4.2. Dual Gramian analysis of truncated affine systems 

In order to compute the dual Gramian G0 of the shift-invariant A'0, we need choose a suitable.' 

set <I> for which A'() = £(#). For that, we let Tk be the quotient group 

rfc := 7Ldlsk7Ld. 

The same notation also stands for any set of representers for this group. Note that rfc is of order 
|dets|fc, and, of course, the fact that s is an integer matrix is essential here. Then, the set $ is 

defined as 
* = {(</>,*,7) := DkErii> :  r/t € »P, ft > 0, 7 € Tfc}. 

It is straightforward to see that, indeed, the shift-invariant set £"($) generated by <I> is exactly the 

truncated set AV 
Next, we observe that the Fourier transform of the function <f> = {X/J, ft, 7) is the function 

$=Dk(ey^) = ea-kyDkJ,    D. : / -► |dct.s|-,/2/(a*-1-),    ey:u,^^u, 

and thus the (a, ft) € 2vr(ZZfi x Zd)-entry of G0(w) has the form 

Go(uj)(a,ß) = Y, H D>$(w + ^)Dkkw + ft) Y e.-*7(a - ft)- 
i/»€+A:>0 7€l\. 

The exponential sum is zero unless es.-k{a_0) is the identity character of Tk, i.e., unless -ft > 

K(« - ft) (cf. (2.9) for the definition of K). Consequently, 

GoM(a,/J) = Y     £     £(***("+ «)M***(w + /?))• 
il>e* k=K(a-ß) 
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Defining the //(.-order truncated affine product by 

i.-fc'l' k = K{u>-u;') 

we can \vrit<* (hen 

(l.i:i) Ctl(ui)(t\.ii) = *o[ü; + a,a; 4- //|. 

Recall that some of the main results of this section are in terms of the restriction T,*^ of Tyn 

10 //,.. From the dual Granhan re|)resentation a.s detailed in [RSI], we easily conclude that the 

assumption / G //,. renders all n-rows and o-columns of the dual Gramian G(,(u;) (viewed, say. a.s 

a (|iiadratic form) inactive, in the case |w + rv| < r. This means that the fibers of the dual Gramian 

representation of T(*r are the matrices 

(,\)r(u>),     uj € HI', 

that, are obtained from GoM by retaiuing the entries {a,fi) for which \u; + <v|,|w + ß\ > r, ami 

removing all other entries. 

We thus conclude from Theorem :{.l and Theorem 4.11 the following result: 

Theorem 4.14.  Let X be an affine system generated by *. Lot G'nM. and Go,r(w), u 6 H , be 

the dual Gramian fibers ofT*x , und T*u. as detailed above. Set: 

■1.15) &("):= HGnMH, (7o,;(w):=||G0,r M-'l 

Then: 
(a) X is a Dessel system iff £/,* € Loo- Furthermore, the Bcssel bound of X is then \\GO\\L^- 

(b) Assume X is a Dessel system. If for some r > 0, C7Ö.T e L™- <h(m A 's ;l ™"^me/jtaJ frame 

and its lower frame bound c satisfies 

(4.16) l/c<  lim ||öo.;lk„- 
r->oo 

(r) /f (4.6'j hoid.s. and A i.s a fundamental frame, than Ql~ G ^no /<T all sufficiently large r, and 

equality holds in (4.10). '-' 

4.:J.  Oversampling 

We sidetrack in this subsection to consider the problem of ovcrsampliny an affine system. 

A reader interested in the core development of this article; may skip this section without loss of 

continuity. 

Here, "oversampling'' means that we replace, in the definition of A', the integer shifts 2Z by 

the denser shifts that arc taken from the superlattice L7L'1 of 7Ld (thus L~l is an integer matrix). 

We denote the oversampling system by A(L). 
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The variant of the oversampling problem that we consider here was initiated by Chui and Shi 

[CS1]. [CS3] and [CS4]: One starts with a fundamental frame A' and aims at connecting between 

the bounds of X and the bounds of the oversampling X(L). 

We compare between the dual Gramian Go of the truncated affine A'0 and the dual Gramian 

G[; of the truncated oversampling A"(L)0. The latter is computed in the same way we computed 
Go in §4.2. with an appropriate modification due to change of the lattice: it is now indexed by the 

dual lattice of L7Ld. viz., the sublattice L := 2~L*~^7Ld of 27rZZrf, and its entries are 

u _ 
(4.17) G'o(u;)(a,ß) = \detL\-i £      £      0(5*fc(a, + a))j(stk(u + ii)). 

where 

Kf,(cv) := min{A; : s*ka € £}. 

Note that the only two differences between the entries here of GQ , and those of the dual Gramian Go 
of A'o are (i): the factor |detL|~' that appears here, (ii) the different definition of the K-function. 

We thus conclude that the dual Gramian <$o of A'(L)o is a submatrix of | clot L|~'Go, provided 

that the following "relative primality" condition holds: 

K = KL    on £. 

It is straightforward to conclude from the definition of the K and «£, that this condition is equivalent 

to 

(4.18) L*-l7LdC\s*k7Ld = stkL*-x7Ld,    VA: > 0. 

Note that s* and L*~l are integer matrices. 
Analogous observations are valid if we replace, for r > 0, Go by Go,r, and G,'' by GQ r (only 

that now the comparison should be done fiber by fiber since each fiber has its own set of rows and 

columns). 
Since all dual Gramian matrices are non-negative definite, passing to submatrices of them is 

norm-reducing as well as inverse-norm reducing. The following results are therefore immediate 

from Theorem 4.14, when combined with the above observations. 

Theorem 4.19. Let X be a fundamental affine frame generated by #, with a dilation matrix s, 

with 7Z' us its lattice of shifts, and with frame Inmnds c,C. Let X(L) be ol>tained from X by 

replacing 7Ld by its superlattice L7Ld. Assume that (4.18) holds. Then: 

(a) X{L) is a fundamental frame with upper frame bound < |detL|_1C. 

(b) If, in addition, 4' satisfies (4.6), then the lower frame bound ofX(L) is > |det,L|-1c. 
(c) In particular, if (4.6) holds and X is tight, then X(L) is tight, too. 

Examples. 
(1). If d = 1, s = m, and L — 1/n, condition (4.18) reads as 

nTL n mk7L = mkn7Z, 
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and is clearly equivalent to the relative primality of ?/?., u. Tims, this special case of Theorem 4.19 

generalizes the corresponding theorem of [CS3]. 
(2). More generally, let M be the left-hand-side of (4.18). and let // be the determinant of (any 

basis for) M\ also, let a := dot .s. / := detL"1. Then, on the one hand. //. must be divisible by 

l.c.ni(uKl). while, on the other hand, since M is certainly a superlatticc of the right-hand-side of 

(■I. IS), the equality (4.18) is equivalent to |/t| = \akl\. Thus. (1.18) must hold in case det.s and 

dot. /.~' are relatively prime: 

Corollary 4.20. Theorem 1.1!) holds if we make there, instead of (1.18). the stronger assumption 

().c.(l{<\ct.s,dctL-1) = 1. 

The case when L is scalar in above corollary is essentially proved in [CS4]. 
The oversamplings discussed so far are "benign": no fundamental change in the structure of 

the system occurs while passing from A to X{L). In §6, we will briefly revisit this problem and 

will consider a rather different variant: we choose there the oversampling matrix L as the inverse 

of the dilation matrix. 

5. Quasi-affine systems 

The analysis of affine systems by truncation is very useful for computing the upper frame 

bound. However, it requires a limit process for the capturing of the« more challenging lower frame 

bound. This is particularly painful when we would like to verify that A' is tight, or that another 

system, say A", is dual to A": we need then to verify that the dual Gramian matrices GQA^) 

converge, as /■ -> oo to a scalar form: at the same time, no row or column of G0[u>) belongs to all 

(Ci().r(^))r. 

These difficulties are overcome by associating A' with another shift-invariant system, A', 

referred to as the quasi-affine system of A. To recall, A0 was obtained from A' by truncation, 
i.e.. removing all elements (ij),kj) (as defined in (2.5)) whose index k is negative. We construct 

the quasi-affine system in a more subtle way: given A; < 0, rather than removing from A* the 

.s-^''-shift-invariant set 

{(<L',k,7Ld)} := {(1>,k,j) : (tl>,j) 6 * x 7L% 

we replace it by the larger shift-invariant system 

|dot.s|*'2{\I>,Jfcy;Zrf}. 

Thus. 
A'' := A'„ U {| det .s|fc/2(i/>, k,j) :  </> € *, fc < <U 6 sk7L'1}. 

Our analysis of truncated systems was independent of their dual Gramian analysis: Only after 

the main results were established, we converted them into dual Gramian language. In contrast, 

the dual Gramian of the quasi-affine system is our main tool in the derivation of the connections 

between the affine A and the quasi-affine Xq, hence need be computed at this stage. 
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Iu order to compute the dual Gramian Gq of Xq, we write the quasi-affine system as the union 

X" = X(, U V'i U i '■> U .... 

with 

Yk = \dcts\-k/2E(D-k1<). 

Since we have already computed in the previous section the dual Gramian Ga of A"0, it remains to 
compute the dual Gramian of Uk>iYk. The natural generators lor Yk (as a shift-invariant system) 

are <I>A: := | dct s\~k,2D-k^>. whose Fourier transforms are $(.s*fc). This means that the (n. ;y)-entry 

of the dual Gramian of Xq\Xa is 

oo   

51 51 ^(s*fe(^ + «))^(s*fc(^ + ß)) = *(w + «,<"> + /*] - *o[w + a,w + #]. 
t/>6*fc=l 

Therefore, we obtain from the representation (4.13) of GQ the following result: 

Proposition 5.1. Given n quasi-affine system Xq generated by $, the (a,0)-entry of the dual 

Gmminn Gq{u) of Xq is the affine product *[w + a,u + (i). 

We denote by Q*{u) the norm of the fiber G«(w), and by ö*"(w) the norm of its inverse (with 

the usual convention that these numbers can be infinite). Theorem 3.1 affirms that Xq is a Bessel 

system if and only if Q* € Loo, and that Xq is a fundamental frame if and only if £*, Q*~ € L«,- 

The key then to the connection between Xq and A' lies in the following lemma: 

Lemma 5.2. Let X" be a quasi-affine system, and let r > 0. Let Tx„ be the analysis operator of 

Xq, and let T*<r be its restriction to Hr. Then: 
(a) Xq is a Bessel system (i.e., Tx„ is bounded) if (and only if) T*r is bounded. The Bessel bound 

ofX" is then WT^J2. 
(b) Assume Xq is Bessel. Then, Xq is a fundamental frame if (and only if) T*<r is bounded below 

(hence invertible). Furthermore, the lower frame bound of Xq is then ||rg*r
_1||"2. 

Proof.        We prove only (a). The proof of (b) is entirely analogous. 

As in the case of the truncated affine system, one can easily verify that the dual Gramian 

representation of T*<r is obtained by removing from Gq{ui), for each w € Md, all rows and columns 
a for which \u + a\ > r. We denote by Gq(uj) the so obtained fibers. The norm of T*T. is then the 

essential supremum of the map u> ->• ||(T?(W)||. 

Fix w G IRd\(27rZZrf). Then there exists a positive integer k such that, with uk := .s*fca;. 

(5.3) dist{u}k,2irs*k7Ld) > r. 

Using the s*-invariance of the affine bracket product (2.10), we see that 

G"(u)(a,ß) = G"(u;k)(s'ka,s'kß); 
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i.e.. 6"'(u;) coincides with the snbinatrix of Gv'("-'*••) that corresponds to tlic indices 2-^k7Z' . More- 

over, tluniks to (5.3). that snbinatrix in not only a snbinatrix of C"'(u)k) but also of the smaller 

matrix (V'/(~A)- Since passing to a snbinatrix is norm-reducing (a.s well as inverse-norm reducing. 

a.s needed for the proof of (!>)) on non-negative definite matrices, we therefore conclude that 

t;,;M:=iK>Mll< 11^(^)11 <||r;,rf. 

This being tine for almost every ^ (i.e.. every u) with the exclusion of the null-set 2n7L' ), we 

conclude that 

||r;..,||2 = |ic;(;||^<||r;,r||'
2. 

Since increasing the domain of any operator can only increase its norm, the converse implication 

and inequality are trivial. This proves (a). E 

The above lemma shows that, when analysing a quasi-affine system, we may safely restrict 

attention to any space of the form //,.. The next lemma (which is closely related to Lemma 4.7) 

states (hat. in that event, the difference between the quasi-affine A''' and the truncated affine A() 

is "negligible". 

Lemma 5.-1. Let X'1 he a quasi-affine system generated hy <I>. Assume that. * satisfies (4.6). 

Then, for every e > 0, there exists sufficiently large r. such that, with V := .V''\.\',]. und with TYr 

the restriction ofTY to Hr, 

\\TYA < £. 

We postpone the proof of the lemma to the end of this section, and move; to the main theorem 

of this paper. 

Theorem 5.5. Let X he an affine system generated hy <P, and let Xq he its quasi-affine counter- 

part. Assume that VP satisfies (4.6). Then: 

(a) X is a Dessel system if and only if A''' is a Bessel system. Furthermore, the two systems have 

the same Dessel hound. 

(b) X is a fundamental frame if and only if X" is a fundamental frame.   Furthermore, the two 

systems have the same, frame hounds. 

In particular. X is a fundamental tight frame if and only if Xq is a fundamental tight frame. 

Proof. (a): If A'' is a Bessel system with Bessel bound Cq, then certainly its subset X0 is 

a Bessel system with Bessel bound C < C,r Invoking Theorem 4.3, we conclude that A' is a Bessel 

system, too. and its Bessel bound is C. as well, hence is < C,,. Note that we have not used (4.6) in 

this part of the proof. 

Conversely, assume that A' is a Bessel system with bound C. Then, Theorem 4.3, A0 is a 

Bessel system, too, and with the same bound C; a fortiori, T(*r (=the restriction of TXa to Hr) 

is bounded, and its norm is < \/C, for whatever r we choose. We now choose r large enough to 

ensure that, Lemma 5.4, ||Ty*r||2 < e. with TYr as in that lemma. Consequently, for every / € Hr, 

WThir = \\Txjf + \\T;-ff < (C + e)\\f\\2. 
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This proves that (lie restriction of T{,, to H,. is bounded (and its norm is < \/C + t). which implies. 

Lemma 5.2. thai .V is a Bessel system with hound < \/C + s. Since £ was arbitrary, we obtain 

the desired result. 

(I)): in view of (a), we may assume without loss that .V and A" are Bessel systems with the 

same Bessel hounds.  Now. suppose that .V is a fundamental frame, with lower frame bound c,r 

Invoking Lemma ">.-1. we find r sufficiently large such that, in that lemma's notations. PY>||" < £•, 

Then, for every / G //,-• 

iir.uir2 = II^/II--ii'A-/irj>(^-oii/ii2- 

Assuming, without loss, that cq - s > 0. Theorem --i.il can be invoked to yield that that 7"v is a 

fundamental frame, and with frame hound c > r,7 - ;. Thus, c > cq. 

Finally, we assume that A' is a fundamental frame and with lower frame bound c. Theorem 

4.11 then implies that, for any given £, we can find r such that 

lirv„/|F-'>(r-;)ii/||-\   V/G/L,. 

Since Xq is a superset of A'o, then we trivially obtain from the above that 

Iir;.„/|f-'>(r-c-)||/||2,   V/G/L,. 

Thus. T\,, is bounded below on //,.. therefore. Lemma 5.2. A'' is a fundamental frame with lower 

frame bound > r - ;. We conclude that, <:,, > c. and this completes the proof of (I)). G 

Theorem 5.5. when combined with Theorem 3.1, provides the following complete characteri- 

zation of fundamental affine frames: 

Theorem 5.6. Let A' he an affine system generated by *. Assume that <L> satisfies (4M). Let 

Gq be a dual Gvamian of the associated qnasi-alfine system, as described in Proposition 5.1. with 

norm-function (/*, and inverse-norm function L}'~. Then: 

(a) X is a Bessel system if and only ifQ* G Loo- Furthermore, the Bessel bound is \\Q*\\L^- 

(b) X is a fundamental frame if and only ifCi*,Q*~ G Loo- Furthermore, the lower frame bound 

Our characterization of (fundamental) tight affine frames is now immediate!: by Theorem 3.1 

and Theorem 5.5. X is fundamental and tight if and only if the dual Gramian G"' is a.e., the scalar 

matrix 67, with (' the frame hound, i.e.. if and only is *[u;,u/] = C<L.^'- However, there are 
essentially only two cases here: the diagonal case to = a/, and the case when K(U - u/) = 0. The 
other required conditions are easily derived from this latter case using the affine invariance (2.10) 

of the affine product. 

Corollary 5.7. Let X he an affine system generated by *. Assume that (4.6) holds. Then X is 

a fundamental tight frame if and only if. for almost every u;,u/ G HI' , 
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('({uivcdcntly, 

*[w,u;] = C.     ;uid   *I'L-.o.- f (vj = 0,       for a.e. u.\ and curr n fc 2~(ZZ' \N*2Z' ). 

Remark. The "diagonal condition" in the above characterization is 

This, indeed, is well-known as a necessary condition for a Light frame (cf. [D2]). .0 

Remark. The last corollary implies that functions * whose Fourier transforms are positive a.e. 

cannot generate tight frames. 

From the characterization of tight frames, one obtains the following useful characterization of 

orthonormal wavelets. 

Corollary 5.8.  Let X be an nihiir system generated l>y *1'.  Assume that (1.6) holds.   Then the 

following statements are equivalent: 

(i) The affine set X is an orthonormal basis of Z^(IR' )• 

(ii) Each ip G 4' has norm 1. and 

${LJ,U] = 1,     and  lI'[u/.u; + u] = 0,       for a.e. LJ. and every n G 2TT(7Z'\S*7Z' ). 

Proof. Obviously, A" lies on the unit sphere of L> whenever <I> does so. Therefore, the 

result follows directly from Corollary 5.7 and Proposition 2.3. O 

Remark. It is important to understand that, even if X forms an orthonormal basis for L2, X
q 

is still only a tight frame: inedundancy is lost while passing from A' to A"''! On the other hand. 

if A', indeed, is orthonormal and fundamental, then the shift-invariance of A'n implies that not 

only A„ J_ (A\A0), but also. A"„ 1 (A^A,,). This means that, not only Af' is tight for L2, 

but also A'^A'o is a tight frame for the orthogonal complement A,f of A0. In case A is derived 

from multircsolution, A([ is the familiar scaling function space V0. Hence we obtain the following 

oversampling result: 

Corollary 5.9. If <I' is a collection of orthonormal wavelets constructed with respect to a scaling 

function space Vn, and if they satisfy (l.(i), then the shift-invariant system 

{\dv.ts\k/2E:lDkil> :  ■'/' G *.j G 2Z''.A: < 0} 

is a tight frame for VQ. 

Note that the corollary does not assume any particular way for obtaining the wavelets from 

the multiresolution. In fact, even the Icnyth of V{) (i.e.. the minimal number of scaling functions 

whose shifts span VQ) is only assume here to be finite. O 
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Proof of Lemma 5.4. While it seems plausible that the statement here is weaker than that of 

Lemma 1.7. we did not find a way to derive1 it directly from that lemma, hence provide a separate 

(and very similar) proof. In fact, the proof does show that this is a weaker statement. 

We may assume without loss that vf' is a singleton. Then, we let Yk be the integer shifts of 

|det.s|A^DA-</-. Now, we fix k < 0, and / e //,.. By (2.7), ||TV\/|| = ||[vH«*-fr-),/]Ht2(-ir-)- Taking 
into account the fact that / € Hr, we obtain from Holder's inequality that 

ll[Ä^"fc-),/lllI,(.,r-, < II   E   l^*~fc(- + «))|2[/,/]||/Mc,rM- 
|-+rt|>r. 

Since ||[/,/]||/,,('irrf) = ll/ll2i u'e tuen conclude that 

Pn/||2<||      £     |0(*-fc(-+a))|2||i.([-».irl-)ll/f 

Since |.s*~*'(- + o)| > S~ki\ for some 6 > 1. whenever | • +a\ > r, and since s'~k2n7Z'1 C 2n2Zd, we 

conclude that 

ii £ ivV-fc(-+«))i2ii/_([-^]")<n   E   ^(■+«)i2ii/^(i^]-=:cfc- 
|-+o|>r |-+o|><S-*r 

Now. (I.G) implies that the series ^^„q. converges. However, for the choice r := S~k°, the 

al>ove argument proves that 

l|Tv/||2 =   £  \\Tykf\\2 <   E  C*ll/H2. 
fc=-oo fc> —feo 

i.e., that IITvVH <£*>-*„<*■ O 

6. Tight frames and orthonormal bases constructed by multiresolution 

Since its introduction by Mallat and Meyer (cf. [Ma], [Me]), multiresolution has always been 

the prevalent approach for the construction of "good" affine systems (primarily with respect to the 

dilation matrix .s = 21). In the constructions that we are aware of, the cardinality of ^ has always 
been | det.s| - 1, and the major effort was devoted to selecting * from the refinable space in a way 
that the; «suiting affine system inherits the known "good" properties (orthonormality, Riesz basis) 
of the shifts E(</>), where <f> is the scaling function. This, however, cannot be carried over, and 

need not be carried over to the frame constructions. Cannot, since there are intrinsic limitations 

here. For example, [RSI] shows that the only way to obtain redundant frames of the form E{$), 

$ finite and compactly supported, is by adding redundant generators to a shift-invariant Riesz 

basis £((I>o). Need not, since our results suggest (and the construction in §1.3 demonstrates) that 

successful constructions of affine frames, even tight ones, may be carried out under minimal or no 

assumptions on the scaling function and its mask. 
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Thus, our method for constructing tight frames from multiresolution does not make any pre- 

assumptions on the scaling function, and. at least theoretically, should work for almost any scaling 

function <p. 

The results in this section equally apply to I he case when the refinable space is PSI (i.e.. singly 

generated), or. more generally. FSI (that is, linitelv generated). To simplify the» presentation, we 

first discuss fully the l'SI case, and only then sketch the possible generalizations to FSI setups. 

6.1.  Multiresolution with a single scaling function 

The setup is as follows: <<> in L2(1R'') is given, and l"() be the closed linear span of the shifts 

£((/>) of 4>. Further, o is assumed refinable (= is a sealing function = is a father wavelet) 

which means rhat I", := D{V0) is a superspace of l'„. The underlying idea of multiresolution is to 

select, in some clever way. the generators * of the affine system A from the space V',, in a way that 

their shifts £(*) will "complement" the shifts of o. For notational convenience, we set 

»I'' :-- v|' U (o). 

The assumption *' C V',. is equivalent, [BDR1]. to the equality 

(6.1) ${»*■) = rv,<]>.     rt*', 

for some measurable r :- (r,;.),,,e|,< whose components are each 27r2Z'/-poriodic. The function T,,, IS 

the refinement mask, and the other 7-,/,'s are the wavelet masks. 

A key role in the analysis below is plaved bv t he following 27r-periodic function, which we term 

the fundamental function of multiresolution. and which is defined on El' \{2n7L' ) by 

(-)(w):=^(-)A.(u.-). 
/.•■=o 

with 
A-l 

BfcM := |T„(VA'u;)f- H |r,,(.s'M|2, 

and where 

Note that the fundamental function depends on T,tl. and on the aggregate r*, but not on the 

individual wavelet masks. 

In order to analyse the construction of tight, frames by multiresolution. we naturally invoke 

the characterization of tight frames given in Corollary •",.?. The fundamental function of multireso- 

lution (Miters the discussion when we substitute the various masks into the relevant affine products. 

Precisely, we have: 
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Lemma 6.2.  Assume that ^ G IR''. and u'Eul 2TTZZ'''. //'»I']^. u;] and <I>[o/,u/] are finite, then 

((i.:j) <{'[*:. J\ - *„[u;,a;'] = (-) M</>M <.''(-')■ 

where *,,[, ] is the truncated affine product (cf. (1.13) and its preceding display). In particular, 

(-)(u;) is finite. 

Proof. Since we assume 4'[] to be finite at u,\~'. Holder inequality guarantees the sum 

that defines *I>[u;,u/] to be absolutely convergent. 
Our assumption on J clearly implies that T(S*

J
LO) = r(.s*JJ). for every j > 0. This, combined 

with the definition of * and the reliability of 0 readily implies I hat, for k > 0, 

J] r(.s'fc+1u;)J(yfc+1u;') = et(u;)cMu;)0(ü;'). 

Summing the above over k = 0. 1. 2 we obtain the result. □ 

From that, we get the following characterization of fundamental tight frames that can be 

constructed by multiresolution. In that characterization, it. is useful to consider, for a given t > 0, 

the following bilinear form (defined on C    ): 

(n,v'), :=tv<j)v[l!+ 53 'V'l, •' 
.;> el- 

and to abbreviate 

(6.4) Z:=2it(s'-l7Ztl/7L'1). 

Theorem 6.5. Let <p be a refinai>le function, * a finite set. of wavelets, and T the corresponding 

refinement-wavelet mask as above. Assume that (i) <•/> satisfies (1.6), (ii) 0(0) := Um^^o (j>(u>) = 1» 
and (Hi) the mask r is essentially bounded. Then <i> generates a fundamental tight affine frame 

with bound C if and only if the following two conditions hold: 

(a) For a.e. ui, limn_>_oo0(.s*"u;) = C. 

(b) For a.e. UJ,UI' G Ii!1, if n(u - u/) = 1, then 

<TM,T(ü/)>e(.-*) = ». 

unless (/> vanishes identically on either u + IrtTL' or J + 2~7L' . 
In particular, in case (-) = 1 a.e.. X is a fundamental tight affine frame if the vectors T and EU

T 

are perpendicular a.e., for every v G Z\(). 

Proof. We invoke Corollary 5.7 (the fact that *I' satisfies (4.6) follows from assumptions 
(i) and (iii) of the present theorem). We start with the studying of the diagonal affine product 

*P[u;,u;]. Since, for all n G 7L, 

<I'[s*nu;,s*nw] - »I'ofY"-;,*•"«;] = ]T J3 |V^""+^')|2 = *[w,w] - *«[w,w], 
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we obtain from Lemma 6.2 (after noting that (6.3) holds a.s long as the left hand side of that 

identity is well defined) that. 

il'[u;.u;l - *nkw] = (-)(.S-*V-)|^(N*"^)|
2

- 

Letting n -> -oc. we conclude (from the fact that </>(()) = 1) that tf'[w,u>] = lim,,^-,^ B(.s*"^)- 

Thus, the diagonal condition in Corollary 5.7 is equivalent to assumption (a) here. 

Next, adopting (a) (without loss), we know that i<\] is unite a.e.. and hence we may invoke 

now Lemma 6.2 to conclude that, if u,u' G 1R , and K(^' -U/) — 0, then 

l>[u.J] = (-){u)${u)$(u') + £ r(u:)</V)- 

We iterate now once again with the refinement equation and the wavelet definition to obtain: 

(6.6) tf[u,\u/] = (r(.s*-'o;),r(s,-1^))(-)U., 0(.s* ~'^(.s'-'u/). 

Now, fix cu0 € IR</ and i/ G 2ix{7Ld\s*7Ld). We vary w over u,-„ + 2irs*7Ld, and we vary J over 
u;o + /v+27rs*ZZ''. Regardless of the specific choice of ui.J. i<(^—J) = 0, and the above computation 

of <I'[w,u/] is valid. Furthermore, 

(r(.s--'u;),r(.s--1a;/))e(1,) = (r(.s-*-L-ü).r(.s--,(cj() + /v)))o(u,). 

Thus, for >I'[w,u/] to be 0 for each of the above UJ,J it is necessary and sufficient that one of 

the following holds: either 0 vanishes on s*_lw0 + 2-ZZ(/ = .S*
-1

CJ + 2?rZZrf, or <£ vanishes on 
.s'-1(w0+^)+27rZ'' = .s,-|u;'+27rS'/,or(r(s*-1u;),r(.s'-|a,''))(-)(w) = 0. Since K(S—'w-.s—'u/) = 

1, this triple condition is equivalent to (b). 
If 6 = 1 almost everywhere, then (a) certainly holds. Furthermore, in this case (, )«(u;) is 

the usual inner product, and hence the perpendicularity assumption assumed on r implies the 

satisfaction of (b) as well, hence X is a tight frame. ^ 

Note that the theorem allows the construction of tight frames in two steps: in the first, one 
determines the aggregate |r^|, to guarantee, say, that (-) = 1 (or, at least, that (a) holds). Only 

then, one may proceed to construct the individual masks (-,,,) with the given aggregate |T+|, so 

that they satisfy the orthogonality condition (b). 

In practice, it may be hard to select (r,/,)^ so that the fundamental function B is 1. For 
this reason, it is worth emphasizing the following important special case of Theorem 6.5, oi which 

Theorem 1.7 is still a special case: 

Corollary 6.7. Let <j> be a refinable function, 4' a finite set of wavelets, and r the corresponding 

refinement-wavelet mask as above. Assume that r/> satisfies (4.6), and lima,_+o </>(w) = 1. If, for a.e. 

to, and every v G Z (cf. (6.4)) 

(T{<JJ),T(U) + u)) = 6U, 
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then ty generates ;i fundamental tight fivune with fnune lumiui 1. 

Proof. Fix first a} e 111'' such that <l docs not. vanish everywhere on u + 2~2Z''. Since wo 

arc assuming that \r(u)\ = 1. it is easy to see that (-)(>•) = 1 a.e.: denoting a* := l^^.s**'^)!'-, we 

see that 
m A--I in 

5^(1 - «A.) n".' = * - n ">■ 
k=0 .;'=() .;=•» 

Since ö(u>) is the limit, as in -► oo, of the above expression, we obtain that 0(CJ) = I - n,=oa.7' 

and the infinite product here trivially vanishes a.e. on the set. 

{^elR'':^,^.. *«)}■ 

If, on the other hand. 4> = 0 on w 4- 2ir7Z'1. then i'(*j) = 0. and the proof of Theorem 6.5 
then shows that the value of 0 at u is immaterial for the satisfaction of condition (b) of Theorem 

6.5. As to condition (a) there, since 0(0) = 1. and is continuous there, then for large enough n, 
<j)(s*~nLü) ^ 0, and the above argument then applies to show that, for such n, 9(.s*_"u;) = 1 -> 1, 

as required in (a). 
Thus, we conclude from Theorem 6.5 that 4' generates a tight frame.       ' D 

Remark. Note that the above corollary requires * to have a minimal cardinality of |dets| - 1. 

Moreover, when #vl' = |dot.s| — 1, the matrix 

A := (£"TI/,),/16>|/'.I/G.5 

is square, and the column orthogonality assumption then implies that the matrix is unitary, and 

in particular that 

53i£*vj = i, «-C 

Refinement masks that the satisfy the above are known as conjugate quadrature filters (CQF). 

Thus, in essence, every unitary extension of the row (£"r0)„62 of a CQF mask results in a column 
r that whose masks defines wavelets that generate tight frames. Several constructive methods of 
such unitary extensions are described [RiSl], [RiS2], and [.IS], as a part of an effort to construct 
multivariate orthonormal wavelets. Conversely, a generating set <L> that consists of |dets| - 1 
functions which is constructed as above, can form a tight frame only if r«^ is CQF. However, if we 
use more than | det .s| - 1 generators, there does not seem to be any a-priori restriction on the mask 

r^ (other than the most basic conditions, such as r^(ü) = 1). 

We now turn our attention to orthonormal systems. First, it is easy to conclude (say. from 
the analysis of [BDR2]) that for X constructed from a PSI multiresolution to be orthonormal, it is 
necessary that we do not have more than |dets| - 1 wavelets. Second, Corollary 5.8 characterizes 

all fundamental tight frames that are orthonormal. However, since the additional assumption in 

that corollary is in terms of the constructed wavelets, and not in terms of the masks and/or the 

scaling function, it is worth making the following remark: 
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Corollary 6.8.  Let X he a iundnmnit.nl tight frame generated hy * whose cardinality is | dot. .s| - 1, 

and which is constructed hy multiresolution in the w;iy detailed in Corollary 6.7. Then the following 

statements are equivalent: 

(a) X is ovthonormal. 

(1>)  ||9ll - 1- 

Proof.        Since» r (the refinement-wavelet nia.sk) is assumed to I»' unit, a.e.. we easily conclude^ 

(hy integrating the (-quality |</)|- = (^T,..^,, |r,/,|"')|0|'J = £,/.r-«i" i'/'(-s'-)l"') luiü' 

i.ii't.sr'oMf + x>?ii'-') = ii^ir2- 
06 + 

Thus. 

oil2. (0.9) XI ii'/HI- = (I dot .s| - L)||^ 

Now. if X is orthononnal. each </• has norm 1, and (since with assume to have exactly |dot.s| - 1 

wavelets) we obtain that ||r/>|| = 1. 

Conversely, since A" is a tight frame with frame bound 1, then. Proposition 2.3, A', hence ■*!', 

lies in the closed unit ball of L2. and therefore £06„, ||r||'J < #* = |det.s| - 1. However, upon 

assuming ||</>|| = 1, we obtain from (6.9) that equality holds in the last inequality, and hence that 

A> lies on the unit sphere of L2- My Corollary 5.8. A is orthononnal. Q 

Discussion. It is easy to generate examples of fundamental tight frames that cannot be constructed 

by the unitary extension principle; moreover, these frames may be orthonormal, while ||(/>|| ^ 1. 

For example, let </;0 be a refinable function and let <I' be a wavelet set that is derived from 0o 

by MRA. 

We now switch to another generator, <■/>, of l*o defined by 

<t> ■= '00, 

for some 27r-periodic t. that vanishes on a mill-set only, and that satisfies. lim^-m *(<*>) = '(0) = *• 

Denoting by f the original refinement-wavelet mask, the new refinement-wavelet mask, r (with 

respect to the same wavelet set i') satisfies 

_*(**■)- 
T<!> ~       ,      T*!>o- 

and 

T,„ = jT,,,     i/; € *. 

Denoting by (-)0 the fundamental function of the original MRA construction, and by (-) the funda- 

mental function of the modified MRA construction, it is-easy to see that 

6 = e„/|i|2. 
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With that in hand, one observes that (60. f) satisfy conditions (a,b) of Theorem 6.5 if and only if 
((-). T) satisfy these conditions. This must be so. since the theorem characterizes the tightness of 

the system generated by * and both MR A const ructions result at the same wavelet set <I'. 

However, unless t is unitary, at most one the fundamental functions (-). (-)() can be constant, 

which means that at least one of the two constructions cannot be performed by the unitary extension 

recipe of Corollary 6.7. Furthermore, since t is more or less arbitrary, it is clear that we can choose 

it to guarantee \\<t>\\ ^ 1, regradless of the fact whether * generates an orthonormal system.        □ 

Example. We illustrate the above discussion with a simple example. Let ®\ := \'[0.iJ> fa := 

X[o.2)/2. and fa := Y[o,3]/3, where \Q is the support function of Q. All three functions are refinable, 
have mean-value 1. and their shifts span the same refinable space K0; the orthonormal Haar wavelet 

system can thus be derived from the MRA based on either of these three functions. 

The mask of <p{ is CQF and the unitary extension leads here, indeed, to that Haar wavelet. 
The mask of </»;1 is also CQF, but the unitary extension cannot yield the Haar wavelets (e.g., since 
11<•/>.,11 ^1). though, of course, one obtains a tight frame. Finally, the mask of <i>-, is not CQF. The 
previous discussion shows that the MRAs constructions that lead to the Haar wavelet from either 
<p-2 or </).{ cannot invoke the unitary extension principle: the two underlying fundamental functions 

are not constant. „ P 

Oversampling, continued. We continue the analysis of the oversampling procedure that was 
outlined in H3. We now assume that the oversampling L is the inverse .s-1 of the dilation matrix 
s. This, of course, violates condition (4.18). Indeed, as is pointed out in [CS3]. the oversampling 

of the univariate dyadic orthonormal Haar system by 2 does not yield a tight frame. As a matter 
of fact, the following result shows, in particular, that oversampling by a factor of 2 of any dyadic 
affine system, which is generated from MRA by a compactly supported scaling function, can never 
yield a tight frame; this is regardless whether the original system is a frame or not. 

Proposition 6.10. Let <f> be a refinable function, and # a unite subset of V\. Assume that * 
satisfies (-1.6), that *[] is finite a.e., and that ® vanishes almost nowhere. Let X be the affine 
.system generated by $, and let Y be the oversampling of X with respect to the lattice s~l7L . 

Then Y is not a fundamental tight frame. 

Remarks. We first stress that A" is not assumed to be frame, a fortiori it is not assumed to be a 
tight frame. Also, the proof below shows that the condition </> ^ 0 a.e. can be relaxed; however, 
without any restriction on supp <# the statement is not valid: the univariate wavelet that is derived 
from the sine-function (and whose Fourier transform is the support function of [~2n, -IT] U [7r,27r]) 

generates an orthonormal dyadic affine system. Oversampling by an integer amount results in a 

fundamental semi-orthonormal tight frame. 

Proof. The new lattice of shifts is s~' ZZd, hence its dual is 2ns* 2Ld. Thus, in a way entirely 

analogous to (4.17), we find that the dual Gramian fibers of the quasi-affine Y'1 are indexed by 

2irs*2Z'1, and the (0,a)-entry being 
oo   

|dets|]T      J2      ■0(a**MW.s**(w + «)). 
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We choose a non-diagonal entry (0, a) with «.,->(«) = 0 i.e.. n .= .s*rv0, for some a0 € 2ä(ZZ' \.s*7Z ). 

From that it follows that, with u0 := .s;*-1u;, our (O.n)-entry of the dual Gramian of V is 

oo   

|det.s| Y, J]'0(.s*A'U)))'.'(^A'(-'o +n-0)). 

This expression was computed in Lemma 6.2, and was shown to be 

| det s\G{u0)(t>(u}())(p(*o + O'o). 

Since we assume that, up to a null set, supp0 = HI'', it follows, Corollary 5.7, that, if Y is tight, 
0 = 0 a.e. However, this is absurd since each summand of 0 is non-negative and the first summand 

is IT* |2: if this smnniand is 0 a.e., all our wavelets are 0. O 

6.2. Multircsolution with several scaling functions 

Here, we assume that the space V'0 is FSI and refutable.   This means by definition that the 

shifts £($), <I> C L> finite, are fundamental in VQ, and that Vx : = D{V0) is a superspace of Va. 

Regardless of any further assumptions, this implies that 

$(s*-) = T.|,<I>. 

for some <I> x <I> matrix T<I,, whose entries are measurable and 27r-periodic. The wavelets * are 
constructed with the aid of another matrix, r* whose entries are 27r-periodic and measurable, and 

whose order is # x <I>, that is 

$(/?*•) = T,(,$. 

The augmented matrix T lias now the order of («I» U 4») x <I>. 

The arithmetic manipulations presented in the previous section can be carried verbatim to the 

FSI setup, with an appropriate conversion of the various expressions. For example, the orthogonality 

conditions expressed in Corollary 6.7 should now read as T"{U)T(U> + v) ~ S„I, with / the <I> x $ 

identity matrix. The function 0fc is replaced by the <I> x <[> matrix 

r+MV+(.s*w)V..T+(8*fc-,w)V*(*,fcu;),r*(.s,feü;)T4,(.s**-,ü;)...T.,.M. 

The fundamental function 0 is, thus, a non-negative definite! <[> x <I> matrix, and should be interpreted 

in Lemma 6.2 as a bilinear form. 

We checked, for example, the details of Corollary 6.7: while the product [^lo aj that appears 
in the proof of that corollary is now a matrix product, and may not converge to 0, it suffices to 

show that this product converges to 0 as a bilinear form acting on a fixed vector pair (<I>(u;), <l>(u/)), 

something that follows easily. Further, the continuity assumption on </> at the origin should be 

replaced by the assumption that limw_>o((I)*0$)(u;) = 1. 
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